Gene-Silencing-Induced Changes in Carbohydrate Conformation in Relation to Bioenergy Value and Carbohydrate Subfractions in Modeled Plant (Medicago sativa) with Down-Regulation of HB12 and TT8 Transcription Factors
نویسندگان
چکیده
Gene silencing with RNA interference (RNAi) technology may be capable of modifying internal structure at a molecular level. This structural modification could affect biofunctions in terms of biodegradation, biochemical metabolism, and bioactive compound availability. The objectives of this study were to (1) Detect gene silencing-induced changes in carbohydrate molecular structure in an alfalfa forage (Medicago sativa spp. sativa: alfalfa) with down-regulation of genes that encode transcription factors TT8 and HB12; (2) Determine gene silencing-induced changes in nutrient bioutilization and bioavailability in the alfalfa forage (Medicago sativa); and (3) Quantify the correlation between gene silencing-induced molecular structure changes and the nutrient bioutilization and bioavailability in animals of ruminants. The experimental treatments included: T1 = Non-transgenic and no-gene silenced alfalfa forage (code "NT"); T2 = HB12-RNAi forage with HB12 gene down regulation (code "HB12"); T3 = TT8-RNAi forage with TT8 gene down regulation (code "TT8"). The HB12 and TT8 gene silencing-induced molecular structure changes were determined by non-invasive and non-destructive advanced molecular spectroscopy in a middle infrared radiation region that focused on structural, non-structural and total carbohydrate compounds. The nutrient bioutilization and bioavailability of the modified forage were determined using NRC-2001 system in terms of total digestive nutrient (TDN), truly digestible fiber (tdNDF), non-fiber carbohydrate (tdNDF), fatty acid (tdFA), crude protein (tdCP) and bioenergy profiles (digestible energy, metabolizable energy, net energy) for ruminants. The carbohydrate subfractions were evaluated using the updated CNCPS 6.0 system. The results showed that gene silencing significantly affected tdNFC (42.3 (NT) vs. 38.7 (HB12) vs. 37.4% Dry Matter (TT8); p = 0.016) and tdCP (20.8 (NT) vs. 19.4 (HB12) vs. 22.3% DM (TT8); p = 0.009). The gene-silencing also affected carbohydrate CA4 (7.4 (NT) vs. 4.2 (HB12) and 4.4% carbohydrate (CHO) (TT8), p = 0.063) and CB1 fractions (5.3 (NT) vs. 2.0 (HB12) and 2.6% CHO (TT8), p = 0.006). The correlation study showed that the structural CHO functional group peak area intensity at ca. 1315 cm(-1) was significantly correlated to the TDN1x (r = -0.83, p = 0.042) and the tdNFC (r = -0.83, p = 0.042), the structural CHO functional group height intensity at ca. 1370 cm(-1) was significantly correlated to the tdNDF (r = -0.87, p = 0.025). The A_Non-stCHO to A_StCHO ratio and A_Non-stCHO to A_CHO ratio were significantly correlated to the tdFA (r = 0.83-0.91, p < 0.05). As to carbohydrate fractions, both CA4 and CB1 correlated with carbohydrate spectral intensity of the H_1415 and the H_1315 (p = 0.039; p = 0.059, respectively), CB3 tended to correlate with the H_1150, H_1100 and H_1025 (p < 0.10). In conclusion, RNAi-mediated silencing of HB12 and TT8 modified not only inherent CHO molecular structure but also the biofunctions. The CHO molecular structure changes induced by RNAi gene silencing were associated with biofunctions in terms of the carbohydrate subfractions and nutrient digestion.
منابع مشابه
Rhizophagus irregularis regulates antioxidant activity and gene expression under cadmium toxicity in Medicago sativa
Cadmium (Cd) is a phytotoxic heavy metal (HM) that can induce generation of reactive oxygen species (ROS). Arbuscular mycorrhizal fungi (AMF) are considered as bio-ameliorators that help to mitigate HM-derived oxidative stress. The objective of this study was to assess AM fungus Rhizophagus irregularis on changes in enzymatic activity and transcription of antioxidants of Medicago sativa to Cd s...
متن کاملDown-Regulation of the ALS3 Gene as a Consequent Effect of RNA-Mediated Silencing of the EFG1 Gene in Candida albicans
Background: The most important virulence factor which plays a central role in Candida albicans pathogenesis is the ability of this yeast to alternate between unicellular yeast and filamentous hyphal forms. Efg1 protein is thought to be the main positive regulating transcription factor, which is responsible for regulating hyphal-specific gene expression under most conditions. ALS3 is one of the ...
متن کاملSugarcane Mosaic Virus-Based Gene Silencing in Nicotiana benthamiana
Background:Potyvirus-based virus-induced gene silencing (VIGS) is used for knocking down the expression of a target gene in numerous plant species. Sugarcane mosaic virus (SCMV) is a monopartite, positive single strand RNA virus. Objectives:pBINTRA6 vector was modified by inserting a gene segment of SCMV in place of Tobacco rattle virus (TRV) genome part 1 (TRV1 or RNA1)...
متن کاملShRNA-mediated knock-down of CD200 using the self-assembled nanoparticle-forming derivative of polyethylenimine
Objective(s): ShRNA-mediated silencing strategy is considered to be a potent therapeutic approach. The present study aimed to assess the ability of the previously prepared polyethylenimine (PEI) derivative for the shRNA knock-down of the CD200 gene on the cells obtained from the patients with chronic lymphocytic leukemia (CLL). Materials and Methods: Since there are several investigations...
متن کاملتاثیر دویدن اجباری هوازی کوتاه مدت بر بیان ژنهای miR-124 وRE1-Silencing Transcription Factor در هیپوکامپ موشهای صحرایی نر بالغ
Background and Objective: Transcription factors (TF) and microRNAs, are the largest families of transacting gene regulatory molecules in multicellular organisms. Our goal was to examine the effect of aerobic running on the expression of miR-124 and RE1-silencing TF in the hippocampus of adult male Wistar rats. Materials and Methods: A total of twelve 8-week-old adult male Wistar rats with a mea...
متن کامل